Quadrature-Free Implementation of a Discontinuous Galerkin Global Shallow-Water Model via Flux Correction Procedure
نویسنده
چکیده
The discontinuous Galerkin (DG) discretization relies on an integral (weak) formulation of the hyperbolic conservation law, which leads to the evaluation of several surface and line integrals for multidimensional problems. An alternative formulation of the DG method is possible under the flux reconstruction (FR) framework, where the equations are solved in differential form and the discretization is free from quadrature rules, resulting in computationally efficient algorithms. The author has implemented a quadrature-free form of the nodal DG method based on the FR approach combined with spectral differencing (SD), in a shallowwater (SW) model employing cubed-sphere geometry. The performance of the SD model is compared with the regular nodal DG variant of the SWmodel using several benchmark tests, including a viscous test case. A positivity-preserving local filter is tested for SD advection that removes spurious oscillations while being conservative and accurate. In this implementation, the SD formulation is found to be 18% faster than the DG method for inviscid SW tests cases and 24% faster for the viscous case. The results obtained by the SD formulation are on par with the regular nodal DG formulation in terms of accuracy and convergence.
منابع مشابه
A Discontinuous Galerkin Global Shallow Water Model
A discontinuous Galerkin shallow water model on the cubed sphere is developed, thereby extending the transport scheme developed by Nair et al. The continuous flux form nonlinear shallow water equations in curvilinear coordinates are employed. The spatial discretization employs a modal basis set consisting of Legendre polynomials. Fluxes along the element boundaries (internal interfaces) are app...
متن کاملSpace discontinuous Galerkin method for shallow water flows —kinetic and HLLC flux, and potential vorticity generation
In this paper, a second order space discontinuous Galerkin (DG) method is presented for the numerical solution of inviscid shallow water flows over varying bottom topography. Novel in the implementation is the use of HLLC and kinetic numerical fluxes 1 in combination with a dissipation operator, applied only locally around discontinuities to limit spurious numerical oscillations. Numerical solu...
متن کاملDiscontinuous Galerkin Method for 1D Shallow Water Flow with Water Surface Slope Limiter
A water surface slope limiting scheme is tested and compared with the water depth slope limiter for the solution of one dimensional shallow water equations with bottom slope source term. Numerical schemes based on the total variation diminishing RungeKutta discontinuous Galerkin finite element method with slope limiter schemes based on water surface slope and water depth are used to solve one-d...
متن کاملHybridized Discontinuous Galerkin Methods for Linearized Shallow Water Equations
We present a systematic and constructive methodology to devise various hybridized discontinuous Galerkin (HDG) methods for linearized shallow water equations. At the heart of our development is an upwind HDG framework obtained by hybridizing the upwind flux in the standard discontinuous Galerkin (DG) approach. The chief idea is to first break the uniqueness of the upwind flux across element bou...
متن کاملA Discontinuous Galerkin Method for Three-Dimensional Shallow Water Equations
We describe the application of a local discontinuous Galerkin method to the numerical solution of the three-dimensional shallow water equations. The shallow water equations are used to model surface water flows where the hydrostatic pressure assumption is valid. The authors recently developed a DGmethod for the depth-integrated shallow water equations. The method described here is an extension ...
متن کامل